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Abstract. Sequence labeling is one of the key problems in natural language pro-
cessing. Recently, Recurrent Neural Network (RNN) and its variations have been
widely used for this task. Despite their abilities of encoding information from
long distance, in practice, one single hidden layer is still not sufficient for pre-
diction. In this paper, we propose an attention architecture for sequence labeling,
which allows RNNS to selectively focus on every useful hidden layers instead of
irrelative ones. We conduct experiments on four typical sequence labeling tasks,
including Part-Of-Speech Tagging (POS), Chunking, Named Entity Recognition
(NER), and Slot Filling for Spoken Language Understanding (SF-SLU). Com-
prehensive experiments show that our attention architecture provides consistent
improvements over different RNN variations.

1 Introduction

Nowadays, analyzing and extracting useful information from plain text (especially web
content) is one of the most important research areas. For many applications, sequence
labeling is a fundamental pre-processing step. It is also one of the most well-studied
tasks in natural language processing. As shown in Table|[I] sequence labeling tasks aim
at automatically assigning words in texts with labels.

Traditionally, Hidden Markov Models (HMM), Conditional Random Fields (CRFs),
and Support Vector Machine (SVM) has been widely used for sequence labeling tasks
[9U10115014]). Compared with these models, Recurrent Neural Networks (RNNs) are
able to capture information from a fairly long distance. Recently, with the help of extra
resources and feature engineering, the combination of RNN and other models achieves
state-of-the-art results [813,1243]].

For sequence labeling, each target word and its corresponding label are explicitly
aligned. Previous RNNs predict label solely based on each hidden layer of the corre-
sponding target word. However, in practice, using one single hidden layer is not suf-
ficient for prediction, even with sophisticated variations like Bi-directional Recurrent
Neural Network (Bi-RNN) [16], Long Short-Term Memory (LSTM) [7], and Gated
Recurrent Unit (GRU) [4].

This paper proposes an Attention-based Recurrent Neural Network for Sequence
Labeling (ARNN-SL), which allows RNNs to “focus” not only on the aligned hidden
layer, but other informative hidden layers as well.
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Table 1. An example of sequence labeling tasks.

Different from other tasks such as machine translation [1l], image caption [19], and
speech recognition [3]], where attention mechanism has been successfully applied, se-
quence labeling has its own characteristics for deciding which hidden layer is informa-
tive or not. Intuitively, the closer a hidden layer is to target word, the more information
it contains. Moreover, the aligned hidden layer is always most important to this end. A
windowing technique is introduced by limiting our model to selectively focus on hidden
layers in a small window size, instead of irrelative hidden layers far way. ARNN-SL ex-
plicitly leverages the information from the aligned and attention-focused hidden layers
for prediction.

2 Model

2.1 Simple RNN for Sequence Labeling

Formally, sequence labeling aims at finding the most probable label sequence y =
{y1,...,yr} for a given input word sequence w = {wq,...,wr}, where T is the se-
quence length.

The overall architecture of simple RNN (sRNN) for sequence labeling is depicted
in Figure|l} In this figure, w; represents word at time step ¢ and z; € R" is w;’s word
embedding. y; € R’ is the probability over L labels of word at position ¢ and is defined
as

yr = softmax(Vhy) (D)

where h; € R™ is the hidden state at time step ¢. h; encodes the information in previous
time steps and is computed as:

ht = O'(Wl’t + Uht_l) (2)

where V', W and U are weight matrices. o is active function and is often set to sigmotid.

2.2 RNN Variations

Most of the variations of RNN focus on modifying the way of calculating hidden layer
h¢ in Equation [2} For example, Long Short-Term Memory (LSTM) [[7] and Gated Re-
current Unit (GRU) [4] introduces additional memory cells and gates to depict the long-
range dependency information much better. For local context window technique [13]],

3 For simplicity, we omit bias terms in all the equations.
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Fig. 1. Illustration of SRNN and ARNN-SL for sequence labeling.

instead of using x; for computing h, it uses a weighted sum of all =; in a context
window of wn as input: Z;’J:"_um U;x¢y;, which allows RNN to consider more local
context dependency information.

Bi-directional Recurrent Neural Network [16] is also commonly used for improv-
ing the performance of SRNN. It computes the forward hidden layer h,{ and backward
hidden layer h? using hLl and h? 1 Tespectively, and concatenates these two types of
layers to form the final hidden layer h;. In this way, both past and future information is
preserved.

2.3 Proposed Attention Architecture

In practice, h; alone is still not sufficient for encoding all the information needed for
predicting y;, even with sophisticated variations like Bi-RNN, LSTM, and GRU. In this
paper, we propose Attention-based Recurrent Neural Network for Sequence Labeling
(ARNN-SL), which allows RNN to selectively use multiple hidden vectors’ information
instead of using h; alone.

As shown in Figure[I] ARNN-SL has two types of hidden layers: encoding layer h;
and decoding layer hy. The same as most encoder-decoder frameworks, the last encod-
ing layer is used as the input of the first decoding layer, two sets of parameters are used
for encoder and decoder respectively.

If we ignore the attention component c¢; and all decoding layers, the architecture is
exactly the same as sSRNN and its variations. Attention component c; is used to selec-
tively gather information from encoding layers for prediction, which is computed as:

T
Ct = Zat,jhj (3)

j=1

where a; ; is the weight for h; at time step ¢:

exp(et,;)

=5 “)
Shoy explen)

at,j
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where e ; is attention score. The larger e; ; is, the larger a; ; becomes and the more h;
contributes to c; and y;. For sequence labeling task, ¥; is mainly decided by encoding
layer h;. In order to make full use of its information, h; is directly used for prediction
and e; ; should be set to 0. Since encoding layers which are far from current time step
may be noisy, we pre-define a window size wn and directly set e; ; to 0 when j is
outside the window. To summarize, ¢, ; is calculated as:

®)

o — score(%t,hj)t—wn<j <t+wnandj #t
b 0 else

the input of the score function is the current time step’s decoding layer Et and h;. As
proposed in [11]], there are mainly two types of score functions which can be used:

~ 1T .
score(lu, hy) = hi Weth N general ©)
Ve tanh(Wehy + Weh;)  concat
Finally, the calculation of the output layer y; in Equation|[I]is defined as:
yr = softmax(Vyhe + Veey) @)

encoding hidden layer h; is most informative for predicting y; and is explicitly lever-
aged with attention component c;.

Since our attention architecture does not change the way of computing hidden lay-
ers, it can be directly built upon sSRNN and LSTM. When ARNN-SL is built upon bi-
directional RNNs, two sets of weights and variables are used for forward and backward
directions respectively. For example, two attention components c{ and c? selectively
focus on hf and hé’ They are then concatenated to form a new attention component c;
for the final prediction.

3 Related Work

Recently, attention mechanism leads to state-of-the-art results on many complex tasks
such as machine translation [Ii11], image caption task [19], and speech recognition
[512]. However, due to the characteristics such as align strategy, directly applying the
same mechanism to sequence labeling is not feasible .

The main difference of our specially designed ARNN-SL with attention architec-
tures in other tasks is the way of calculating the attention component c;, as shown in
figure 2] In machine translation [1]], a translated word could be aligned with a word at
any position of the sentence. Attention architecture should selectively focus on hidden
layers at every position. In image caption task [[19], in order to generate current caption
word, hidden layers corresponding to all image segments should be focused on for the
same reason.

The most similar attention architecture to ARNN-SL is used in speech recognition
[512]. Instead of using all hidden layers, only the layers corresponding to the most prob-
able consecutive k acoustic frames are focused on. The same idea is also implemented in
machine translation [[L1], but it performs worse than attention for all layers. Compared
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Fig. 2. Attention architectures used in different tasks.

with these architectures, ARNN-SL does not dynamically decide which consecutive
hidden layers should be used for attention (Equation [3). The useful hidden layers are
always close to the current position for sequence labeling.

For sequence labeling, the label is mostly affected by the word and hidden layer
in current time step. To the best of our knowledge, ARNN-SL is the first attention
architecture that explicitly leverages the contribution from the current hidden layer and
attention component (Equation [7).

4 Experiments

4.1 Datasets and Experimental Setup

ARNN-SL is evaluated on four commonly used tasks for sequence labeling: Part-Of-
Speech Tagging (POS), Chunking EL Named Entity Recognition (NER) EL and Slot Fill-
ing for Spoken Language Understanding (SF-SLU) [6/18l17]. Since there is no pre-
defined development data for the datasets of Chunking and SF-SLU tasks, we randomly
choose 20% of training data for validation. AdaDelta is used to control learning rate
[21]. We use the same dropout strategy as that in [20] and the dropout rate is set to 0.5.
Word embedding size and hidden layer size are set to 500. Word embeddings are either
randomly initialized or pretrained using Word2Vec toolkitlﬂon English Wikipedia (Au-
gust 2013 dump). Models are trained for 25 epochs, and we report the results on epoch
which achieves the highest performance on development data. We do not use features
which are derived from lexical resources or other NLP systems. The only pre-processing
we use is lowercasing.

4 CoNLL 2000 shared task: http://www.cnts.ua.ac.be/conl12000/chunking
5 CoNLL 2003 shared task: http: //www.cnts.ua.ac.be/conll12003/ner
®http://code.google.com/p/word2vec/
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Fig. 3. Illustration of the impact of attention window sizes and score functions. ARNN-SL is built
upon Bi-LSTM. Pretrained word embeddings are used. Attention window size: “0” indicates
that attention architecture is not used, “++” indicates that windowing technique is not used and
attention selectively focuses on all encoding layers. w/o LVRG: (dotted line) traditional attention
mechanism. w/ LVRG: (solid line) ARNN-SL which explicitly leverage the contribution from
the current hidden layer and attention component (Equation [7).

4.2 Main Results

As shown in Figure 3] compared to traditional attention mechanism (w/o LVRG), mod-
els that explicitly leverage the information from the aligned and attention-focused hid-
den layers (w/ LVRG) perform consistently better. In most cases, models without LVRG
actually perform worse than Bi-LSTM baselines, especially on SF-SLU task and when
the window size is large. The weighted sum of all encoding layers (Equation[3) is likely
to bring noises. The current encoding layer should always be directly used for predic-
tion.

Our proposed attention architecture consistently improves the performance of Bi-
LSTM on all tasks. The best performance is usually achieved at window size 2 or 3. The
performance drops when the window size is bigger than 3 and reaches the minimum
when attention focuses on all encoding layers. Windowing technique is indispensable
for the good performance on sequence labeling.

The trend of the curve for the concat score function is similar to that of general.
However, general score function often performs better than concat. We highly recom-
mend using general score function in practice, since it’s also easier to implement and
is 2 ~ 3 times faster.

Overall, ARNN-SL obtains 1.14%, 2.14%, 3.21% and 0.90% improvement on POS,
Chunking, NER and SF-SLU respectively compared to sophisticated bi-direction Bi-
LSTM baselines.

4.3 Attention Visualization

Since attention window size is crucial for ARNN-SL’s performance, it’s worth to ex-
plore which position of encoding layers the attention really focused on. As shown in
Figure [ general and concat score functions both tend to focus on positions near the
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Fig. 4. Illustration of which position of encoding layers ARNN-SL focus on. ARNN-SL is built
upon Bi-LSTM and is tested on SF-SLU task. For each window position j, we sum up variable
at,; in all training examples at all time steps. Each bar represents the percentage of this summed
value over corresponding positions.

center. This explains the performance’s decline when attention window size is bigger
than 3 in the above section. This also further strengthens our claim: encoding layers
which are far from the current time steps are noisy.

Another interesting phenomenon from this figure is that the forward direction of
ARNN-SL mainly focuses on both position —1 and position 1. While the backward
direction mainly focuses only on position —1. This may caused by that backward RNN’s
hidden layers contains only future information, so hidden layer at position 1 has no
information about word at position —1. While word at this position may contains most
useful information.

5 Conclusion and Future Work

This paper presents a novel attention architecture called ARNN-SL, designed for se-
quence labeling. We demonstrate its effectiveness on POS, Chunking, NER, and SF-
SLU tasks. More precisely, we conclude that for sequence labeling tasks: 1) it’s crucial
to explicitly leverage the contribution from the current hidden layer and attention com-
ponent, 2) general score function is a better choice than concat, 3) using windowing
technique to restrict the attention is indispensable and the window size should be small.

The aim of this paper is investigating the impact of the attention architecture. We
keep our model as simple and reproducible as possible. Note that the state-of-the-art
results on POS, Chunking and NER tasks are all obtained by models combination, extra
resources and feature engineering [8/12)3]]. In the future, it’s promising to implement
ARNN-SL under the same sophisticated configurations for further improvements on
these tasks (e.g. combining ARNN-SL and CRF/CNN, make using of different features
and DBpedia knowledge).
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